Some More Remarks on Generalized Useful Information Measure

Satish Kumar*, Arvind Kumar**and Surender Kumar ${ }^{* * *}$
*Department of Mathematics, Arbaminch University Ethiopia
Department of Mathematics, BRCM CET-Bhiwani (India), *MM College Fatehabad

(Received 05 February, 2013, Accepted 15 March, 2013)

$$
\begin{align*}
& \text { ABSTRACT: Let } \\
& \qquad \begin{array}{c}
\mathbf{t}^{\mathbf{L}}{ }_{\mathrm{u}=}=\frac{1}{t} \log _{D}\left(\sum_{i=1}^{k} \frac{p_{i}^{\beta} u_{i}^{t+1}}{\left(\sum_{j=1}^{k} p_{j}^{\beta} u_{j}\right)^{t+1}} D^{n_{i} t}\right) \quad(\mathbf{t} \neq \mathbf{0}) \\
\\
\\
\\
\\
\\
\mathbf{H}(\mathbf{P}, \mathbf{U})=\frac{1}{1-\alpha} \log \sum_{i=1}^{k} \frac{u_{i} p_{i}^{\alpha+\beta-1}}{\sum u_{j} p_{j}^{\beta}}
\end{array} \tag{1}
\end{align*}
$$

Where p_{i} is the probability of the \boldsymbol{i} th input symbol to a noiseless channel, n_{i} is the length of the code sequence for the \boldsymbol{i} th symbol in some uniquely decipherable code and u_{i} is the utility factor. This utility factor has very important significance in communication problems. We shall find its lower and upper bounds in terms of generalized useful information.
In this paper we shall find a relation between quantities (1) and (2) using the relation $\sum D^{n_{i}} p_{i}^{\beta-1} \leq 1$.

I. INTRODUCTION

Consider the following model for a finite random experiment

$$
S=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k} \tag{3}\\
p_{1} & p_{2} & \cdots & p_{k} \\
u_{1} & u_{2} & \cdots & u_{k}
\end{array}\right]
$$

Where $\mathrm{A}=\left(a_{1}, a_{2}, \ldots \ldots, a_{k}\right)$ is the alphabet,

$$
\mathrm{P}=\left(p_{1}, p_{2}, \ldots \ldots, p_{k}\right) \text { is the probability distribution and }
$$

$\mathrm{U}=\left(u_{1}, u_{2}, \ldots \ldots, u_{k}\right)$ is the utility distribution. The u_{i} are non-negative real numbers.
Consider
$H(P, U)=-\sum_{i=1}^{k} p_{i}^{\beta} u_{i} \log p_{i}$
Consider the problem of encoding the letters output by S in (3) by means of a single letter prefix code, whose code-words ($w, w, \ldots \ldots . . w_{k}$) have lengths ($n_{1}, n_{2}, \ldots \ldots . . n_{k}$) satisfying the inequality
$\sum_{i=1}^{k} D^{n_{i}} p_{i}^{\beta-1} \leq 1$
Here D is the size of code alphabet.

The useful mean length L_{u} of the code was defined as:

$$
\begin{equation*}
L_{u}=\frac{\sum u_{i} n_{i} p_{i}}{\sum u_{i} p_{i}} \tag{6}
\end{equation*}
$$

And the authors obtained bounds for it in terms of (P, U). In this paper, we study coding theorems by considering a new function depending on the parameters α and β and a utility function. Our motivation for studying this new function is that it generalizes "useful" information measure.
Consider the function

$$
\begin{equation*}
{ }_{\mathrm{t}} \mathrm{~L}_{\mathrm{u}}=\frac{1}{t} \log _{D}\left(\sum_{i=1}^{k} \frac{p_{i}^{\beta} u_{i}^{t+1}}{\left(\sum_{j=1}^{k} p_{j}^{\beta} u_{j}\right)^{t+1}} D^{n_{i} t}\right) \quad(\mathrm{t} \neq 0) \tag{7}
\end{equation*}
$$

Which we call as the function exponential useful mean length of code-words weighted with the function of probabilities and utilities.
Consider also the function
$\alpha H(P, U)=\frac{1}{1-\alpha} \log \sum_{i=1}^{k} \frac{u_{i} p_{i}^{\alpha+\beta-1}}{\sum u_{j} p_{j}^{\beta}}$
We call this as satisfactory measure for the valuable or useful information.

In the next section we now find a relation between the quantities
(7) and (8) under the condition

$$
\sum_{i=1}^{k} D^{n_{i}} p_{i}^{\beta-1} \leq 1
$$

Theorem 1: For every uniquely decipherable code, the generalized α-average length of codewords satisfies

$$
\begin{equation*}
\left.\frac{\alpha}{1-\alpha} \log _{D}\left(\sum_{i=1}^{k} \frac{p_{i}^{\beta} u_{i}^{\frac{1}{\alpha}} D^{-n_{i}\left(\frac{\alpha-1}{\alpha}\right)}}{\left(\sum_{j=1}^{k} p_{j}^{\beta} u_{j}\right)^{\frac{1}{\alpha}}}\right) \geq \frac{\frac{1}{1-\alpha} \log _{2}\left(\sum_{i=1}^{k}\left(\sum_{i} p_{i}^{\alpha+\beta-1} u_{j} p_{j}^{\beta}\right)\right.}{}\right) \tag{9}
\end{equation*}
$$

Whenever $\alpha>0, D \geq 2, \quad n_{i} \quad$ are \quad integers,
$p_{i} \geq 0(i=1,2, \ldots \ldots, k)$
and $\sum_{i=1}^{k} D^{n_{i}} p_{i}^{\beta-1} \leq 1, \quad \sum_{i=1}^{k} p_{i}=1$.
Proof: We shall use the Holder's inequality
$\sum x_{i} y_{i} \geq\left(\sum x_{i}^{p}\right)^{\frac{1}{p}}\left(\sum y_{i}^{q}\right)^{\frac{1}{q}}$
if $p<1(\neq 0)$ and $p^{-1}+q^{-1}=1$.
There is equality in (12) if and only if there exist a positive number c such that

$$
x_{i}^{p}=c y_{i}^{q}
$$

Let us take

$$
\begin{gather*}
x_{i}=p_{i}^{-\frac{\beta}{t}}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{-\frac{t+1}{t}} D^{-n_{i}} \tag{11}\\
y_{i}=p_{i}^{\frac{\alpha+\beta-1}{\alpha t}}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{\frac{t+1}{t}} \tag{12}
\end{gather*}
$$

Since $p=-t$ and so $q=\frac{p}{1-p}=\frac{t}{t+1}$
We put values from equations (11), (12) in (10) and using the generalized Craft's inequality
$\sum_{i=1}^{k} D^{n_{i}} p_{i}^{\beta-1} \leq 1$, we have
$1 \geq \sum_{i=1}^{k} D^{n_{i}} p_{i}^{\beta-1} \geq$

$$
\begin{aligned}
& \geq\left[\sum_{i=1}^{k}\left(p_{i}^{-\frac{\beta}{t}}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{-\frac{t+1}{t}} D^{-n_{i}}\right)^{-t}\right]^{-\frac{1}{t}} \times \\
& {\left[\sum_{i=1}^{k}\left(p_{i}^{\frac{\alpha+\beta-1}{\alpha t}}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{\frac{t+1}{t}}\right)^{\frac{t}{1+t}}\right]^{\frac{t+1}{t}}}
\end{aligned}
$$

Or

$$
\left[\begin{array}{l}
{\left[\sum_{i=1}^{k} p_{i}^{\beta}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{t+1} D^{n_{i} t}\right]^{\frac{1}{t}}} \\
\geq\left[\sum_{i=1}^{k} p_{i}^{\frac{\alpha+\beta-1}{\alpha(t+1)}}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)\right]^{\frac{t+1}{t}}
\end{array}\right.
$$

Taking \log on both the sides, we have

$$
\begin{aligned}
& \frac{1}{t} \log _{D}\left[\sum_{i=1}^{k} p_{i}^{\beta}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{t+1} D^{n_{i} t}\right] \\
& \geq \frac{t+1}{t} \log _{D}\left[\sum_{i=1}^{k} p_{i}^{\frac{\alpha+\beta-1}{\alpha(t+1)}}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)\right]
\end{aligned}
$$

Put $\alpha=\frac{1}{t+1}, \alpha>0, \alpha \neq 1$ we have

$$
\begin{array}{r}
\frac{\alpha}{1-\alpha} \log _{D}\left(\sum_{i=1}^{k} \frac{p_{i}^{\beta} u_{i}^{\frac{1}{\alpha}} D^{n_{i}\left(\frac{1-\alpha}{\alpha}\right)}}{\left(\sum_{j=1}^{k} p_{j}^{\beta} u_{j}\right)^{\frac{1}{\alpha}}}\right) \\
\geq \frac{\frac{1}{1-\alpha} \log _{2}\left(\sum_{i=1}^{k} \frac{u_{i} p_{i}^{\alpha+\beta-1}}{\left(\sum_{j=1}^{k} u_{j} p_{j}^{\beta}\right)}\right)}{\log _{2} D}
\end{array}
$$

This proves the theorem.
Particular case: If $\beta=1$ and $\alpha \rightarrow 1$ then (9) reduces to the result obtained by G. Longo [4].

$$
L_{u} \geq \frac{H(P, U)-\overline{u \log u}+\bar{u} \log \bar{u}}{\bar{u} \log D}
$$

Theorem 2: By properly choosing the lengths $n_{1}, n_{2}, \ldots \ldots ., n_{k}$ in the code of theorem $1,{ }_{t} \mathrm{~L}_{\mathrm{u}}$ can be made to satisfy the following inequality:

$$
\begin{align*}
& \frac{\alpha}{1-\alpha} \log _{D}\left(\sum_{i=1}^{k} \frac{p_{i}^{\beta} u_{i}^{\frac{1}{\alpha}} D^{-n_{i}\left(\frac{\alpha-1}{\alpha}\right)}}{\left(\sum_{j=1}^{k} p_{j}^{\beta} u_{j}\right)^{\frac{1}{\alpha}}}\right)< \\
& \frac{\frac{1}{1-\alpha} \log _{2}\left(\sum_{i=1}^{k} \frac{u_{i} p_{i}^{\alpha+\beta-1}}{\left(\sum_{j=1}^{k} u_{j} p_{j}^{\beta}\right)}\right)}{\log _{2} D}+1 \tag{13}
\end{align*}
$$

Proof: Let n_{i} be the (unique) positive integer satisfying the inequality

$$
\begin{align*}
& -\log _{D}\left(\frac{u_{i} p_{i}^{\alpha}}{\sum_{j=1}^{k} u_{j} p_{j}^{\alpha+\beta-1}}\right) \leq n_{i}< \\
& -\log _{D}\left(\frac{u_{i} p_{i}^{\alpha}}{\sum_{j=1}^{k} u_{j} p_{j}^{\alpha+\beta-1}}\right)+1 \quad i=1,2, \ldots \ldots, k \tag{14}
\end{align*}
$$

From the left inequality of (14)

$$
D^{-n_{i}} \leq\left(\frac{u_{i} p_{i}^{\alpha}}{\sum_{j=1}^{k} u_{j} p_{j}^{\alpha+\beta-1}}\right) \quad i=1,2, \ldots \ldots . k
$$

Multiplying by $p_{i}^{\beta-1}$ and summing, we get:
$\sum_{i=1}^{k} D^{n_{i}} p_{i}^{\beta-1} \leq 1$
This is generalized Craft's inequality. Therefore there indeed exist uniquely decipherable codes with the code word length determines by (15).

From the right inequality of (15)
$n_{i}<-\log _{D}\left(\frac{u_{i} p_{i}^{\alpha}}{\sum_{j=1}^{k} u_{j} p_{j}^{\alpha+\beta-1}}\right)+1$
Or
$D^{-n_{i}}>\left(\frac{u_{i} p_{i}^{\alpha}}{\sum_{j=1}^{k} u_{j} p_{j}^{\alpha+\beta-1}}\right) D^{-1}$
Or
$D^{-n_{i}\left(\frac{\alpha-1}{\alpha}\right)}>\left(\frac{u_{i} p_{i}^{\alpha}}{\sum_{j=1}^{k} u_{j} p_{j}^{\alpha+\beta-1}}\right)^{\left(\frac{\alpha-1}{\alpha}\right)} D^{\left(\frac{1-\alpha}{\alpha}\right)}$
Multiplying both sides by $p_{i}^{\beta}\left(\frac{u_{i}}{\sum_{j=1}^{k} p_{j}^{\beta} u_{j}}\right)^{\frac{1}{\alpha}}$ and summing and then taking \log on both sides, we obtain result.

REFERENCES

[1]. J. Aczel (1975), "On Shannon’s inequality, optimal coding, and characterizations of Shannon's and Renyi's entropies", Instituto Nazionale di Alta Mathematica Symposia Mathematica, XV, 153-179.
[2]. M. Bellis and S.Guiasu (1968), "A quantitative-qualitative measure of information in cybernetics", IEEE Trans. Inform. Theory, II-14,593-594.
[3]. S.Guiasu and C.F. Picard (1971), "Borne inferieure de la longueur utile de certains codes", L.R. Acad. Sci. Paris, 273, 248-251.
[4]. G. Longo (1976), "A noiseless coding theorem for source having utilities", SIAM J. Appl. Math., 30(4), June 1976,739748.
[5]. B.D. Sharma, J. Mitter and Man Mohan, "On measures of useful information", Information and Control. Volume 39 issue 3, 1978, 323-336.
[6]. J. Aczel and Z. Daroczy, "Uber Verallegemeineste uasiliniare mittelveste die mit grewinebts functionen gebildet" Sind. Pub. Math. Debrecan, 10, 171-190.
[7]. J.N. Kapur "Generalized entropy of order α and type β " Maths. Seminar, Delhi, 4 (1967), 78-94.
[8]. Singh, R.P. and Rajeev Kumar, (2003). VApplication of Holder's Inequality in Information Theory". Information Sciences,152, 145-154.

